Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 18(2): 247-262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227403

RESUMO

This article presents the system architecture for an implant concept called NeuroBus. Tiny distributed direct digitizing neural recorder ASICs on an ultra-flexible polyimide substrate are connected in a bus-like structure, allowing short connections between electrode and recording front-end with low wiring effort and high customizability. The small size (344 µm × 294 µm) of the ASICs and the ultraflexible substrate allow a low bending stiffness, enabling the implant to adapt to the curvature of the brain and achieving high structural biocompatibility. We introduce the architecture, the integrated building blocks, and the post-CMOS processes required to realize a NeuroBus, and we characterize the prototyped direct digitizing neural recorder front-end as well as polyimide-based ECoG brain interface. A rodent animal model is further used to validate the joint capability of the recording front-end and thin-film electrode array.


Assuntos
Encéfalo , Eletrocorticografia , Animais , Eletrodos , Cabeça
2.
Microsyst Nanoeng ; 9: 54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180455

RESUMO

Demands for neural interfaces around functionality, high spatial resolution, and longevity have recently increased. These requirements can be met with sophisticated silicon-based integrated circuits. Embedding miniaturized dice in flexible polymer substrates significantly improves their adaptation to the mechanical environment in the body, thus improving the systems' structural biocompatibility and ability to cover larger areas of the brain. This work addresses the main challenges in developing a hybrid chip-in-foil neural implant. Assessments considered (1) the mechanical compliance to the recipient tissue that allows a long-term application and (2) the suitable design that allows the implant's scaling and modular adaptation of chip arrangement. Finite element model studies were performed to identify design rules regarding die geometry, interconnect routing, and positions for contact pads on dice. Providing edge fillets in the die base shape proved an effective measure to improve die-substrate integrity and increase the area available for contact pads. Furthermore, routing of interconnects in the immediate vicinity of die corners should be avoided, as the substrate in these areas is prone to mechanical stress concentration. Contact pads on dice should be placed with a clearance from the die rim to avoid delamination when the implant conforms to a curvilinear body. A microfabrication process was developed to transfer, align, and electrically interconnect multiple dice into conformable polyimide-based substrates. The process enabled arbitrary die shape and size over independent target positions on the conformable substrate based on the die position on the fabrication wafer.

3.
Biosens Bioelectron ; 205: 114090, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35227972

RESUMO

Optical stimulation of genetically modified nerve cells has become one of the state-of-the-art methods in neuroscience. This so-called optogenetic approach allows cell-type specific activation in comparison to more generalized electrical stimulation. Combinations of both stimulation modalities would be desirable to investigate effects in detail and specify differences. This work presents the design of a miniaturized optoelectronic device that allows optical and electrical activation at the same spot. Indium tin oxide (ITO), which is transparent to visible light, has been chosen as electrode material. Light emitting diodes were assembled on a polyimide substrate with integrated interconnection lines, directly behind the electrodes to compare optical with electrical stimulation. The optical transparency of the ITO-polyimide layer stack was investigated and showed sufficient transmission in the required wavelength range. ITO electrodes with diameters up to 1000 µm were electrochemically characterized using electrical impedance spectroscopy (EIS). Several diameters did show comparable results to platinum, a commonly used electrode material. Fully assembled devices were used in combination an ex vivo setting with genetically modified retina to demonstrate the functionality of this approach. Retinal ganglion cells were excited by both, optical and electrical stimulation at the same spot and signals were recorded via standard microelectrode arrays (MEA) as reference. The simultaneous stimulation and recording of directly evoked action potentials indicates a similar mode of action of the two stimulation modalities. Further engineering work is needed to transfer the presented and proven concept into devices for chronic implantation, might it be in animal or first-in-human studies.


Assuntos
Técnicas Biossensoriais , Animais , Espectroscopia Dielétrica , Estimulação Elétrica , Microeletrodos , Optogenética
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6880-6883, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892687

RESUMO

Demands on flexible neural interfaces in terms of functionality, spatial resolution and longevity have increased in the past years. These requirements can be met by sophisticated integrated circuits developed in CMOS (complementary metal oxide semiconductor) technology. Embedding such fabricated dice into flexible polymeric substrates greatly enhances the adaption to the mechanical environment in the body. With the process developed here, 100 % of individual dice (n = 34, 390 x 390 µm2) could be transferred simultaneously into polyimide (PI) substrates with simple and exact positioning (0.2° rotational and 5 µm translational error). Levelled layer build-up and standard microfabrication technologies could be used for CMOS-post-processing in order to manufacture metal interconnections between contact pads of 100 µm thin dice and PI insulation as selectively patterned device substrate. The process allows for individual positioning according to desired shape of the final chip-in-foil-system and for upscaling the number of dice to be transferred. Furthermore, final distribution and embedding of dice on the flexible substrate is independent from their distribution on the CMOS fabrication wafer the and does not require additional adhesion promoters. During fabrication the transfer method is insensitive to high temperatures (450 °C in this study) and hence enables a wide range of post-processes. Shear strength between dice and PI substrate was characterized by shear tests and results (58.1 ± 13.7 MPa) are in the range achieved with the adhesive benzocyclobutene (BCB).


Assuntos
Semicondutores , Silício , Metais , Óxidos , Polímeros
5.
Materials (Basel) ; 14(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401644

RESUMO

Ceramics are repeatedly investigated as packaging materials because of their gas tightness, e.g., as hermetic implantable housing. Recent advances also make it possible to print the established aluminum oxide in a Fused Filament Fabrication process, creating new possibilities for manufacturing personalized devices with complex shapes. This study was able to achieve integration of channels with a diameter of 500 µm (pre-sintered) with a nozzle size of 250 µm (layer thickness 100 µm) and even closed hemispheres were printed without support structures. During sintering, the weight-bearing feedstock shrinks by 16.7%, resulting in a relative material density of 96.6%. The well-known challenges of the technology such as surface roughness (Ra = 15-20 µm) and integrated cavities remain. However, it could be shown that the hollow structures in bulk do not represent a mechanical weak point and that the material can be gas-tight (<10-12 mbar s-1). For verification, a volume-free helium leak test device was developed and validated. Finally, platinum coatings with high adhesion examined the functionalization of the ceramic. All the prerequisites for hermetic housings with integrated metal structures are given, with a new level of complexity of ceramic shapes available.

6.
Sensors (Basel) ; 20(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503211

RESUMO

The interest in dry electroencephalography (EEG) electrodes has increased in recent years, especially as everyday suitability earplugs for measuring drowsiness or focus of auditory attention. However, the challenge is still the need for a good electrode material, which is reliable and can be easily processed for highly personalized applications. Laser processing, as used here, is a fast and very precise method to produce personalized electrode configurations that meet the high requirements of in-ear EEG electrodes. The arrangement of the electrodes on the flexible and compressible mats allows an exact alignment to the ear mold and contributes to high wearing comfort, as no edges or metal protrusions are present. For better transmission properties, an adapted coating process for surface enlargement of platinum electrodes is used, which can be controlled precisely. The resulting porous platinum-copper alloy is chemically very stable, shows no exposed copper residues, and enlarges the effective surface area by 40. In a proof-of-principle experiment, these porous platinum electrodes could be used to measure the Berger effect in a dry state using just one ear of a test person. Their signal-to-noise ratio and the frequency transfer function is comparable to gel-based silver/silver chloride electrodes.


Assuntos
Eletrodos , Eletroencefalografia , Platina , Orelha , Humanos , Porosidade , Razão Sinal-Ruído
7.
Sci Rep ; 8(1): 14749, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283015

RESUMO

Neural interfaces for neuroscientific research are nowadays mainly manufactured using standard microsystems engineering technologies which are incompatible with the integration of carbon as electrode material. In this work, we investigate a new method to fabricate graphitic carbon electrode arrays on flexible substrates. The devices were manufactured using infrared nanosecond laser technology for both patterning all components and carbonizing the electrode sites. Two laser pulse repetition frequencies were used for carbonization with the aim of finding the optimum. Prototypes of the devices were evaluated in vitro in 30 mM hydrogen peroxide to mimic the post-surgery oxidative environment. The electrodes were subjected to 10 million biphasic pulses (39.5 µC/cm2) to measure their stability under electrical stress. Their biosensing capabilities were evaluated in different concentrations of dopamine in phosphate buffered saline solution. Raman spectroscopy and x-ray photoelectron spectroscopy analysis show that the atomic percentage of graphitic carbon in the manufactured electrodes reaches the remarkable value of 75%. Results prove that the infrared nanosecond laser yields activated graphite electrodes that are conductive, non-cytotoxic and electrochemically inert. Their comprehensive assessment indicates that our laser-induced carbon electrodes are suitable for future transfer into in vivo studies, including neural recordings, stimulation and neurotransmitters detection.


Assuntos
Técnicas Eletroquímicas/instrumentação , Grafite/química , Microtecnologia/métodos , Nanotecnologia/instrumentação , Soluções Tampão , Dopamina/química , Condutividade Elétrica , Humanos , Peróxido de Hidrogênio/química , Raios Infravermelhos , Lasers , Microeletrodos , Nanotecnologia/métodos , Fosfatos/química
8.
Eur J Transl Myol ; 26(3): 6062, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27990233

RESUMO

The objective of this work is to produce a laser- fabricated polymer-metal-polymer electrode with the merit of a carbon-based coating as the active site. A 10 µm-thick layer of parylene-C is used serving as the insulation layer in which the active site is locally laser-pyrolyzed. Our preliminary results show that the proposed method is promising in terms of fabrication feasibility and desired electrochemical capabilities.

9.
J Neurophysiol ; 116(4): 1684-1693, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27486110

RESUMO

Retinal degeneration (rd) leads to progressive photoreceptor cell death, resulting in vision loss. Stimulation of the inner-retinal neurons by neuroprosthetic implants is one of the clinically approved vision-restoration strategies, providing basic visual percepts to blind patients. However, little is understood as to what degree the degenerating retinal circuitry and the resulting aberrant hyperactivity may prevent the stimulation of physiological electrical activity. Therefore, we electrically stimulated ex vivo retinas from wild-type (wt; C57BL/6J) and blind (rd10 and rd1) mice using an implantable subretinal microchip and simultaneously recorded and analyzed the retinal ganglion cell (RGC) output with a flexible microelectrode array. We found that subretinal anodal stimulation of the rd10 retina and wt retina evoked similar spatiotemporal RGC-spiking patterns. In both retinas, electrically stimulated ON and a small percentage of OFF RGC responses were detected. The spatial selectivity of the retinal network to electrical stimuli reveals an intact underlying network with a median receptive-field center of 350 µm in both retinas. An antagonistic surround is activated by stimulation with large electrode fields. However, in rd10 and to a higher percentage, in rd1 retinas, rhythmic and spatially unconfined RGC patterns were evoked by anodal or by cathodal electrical stimuli. Our findings demonstrate that the surviving retinal circuitry in photoreceptor-degenerated retinas is preserved in a way allowing for the stimulation of temporally diverse and spatially confined RGC activity. Future vision restoration strategies can build on these results but need to avoid evoking the easily inducible rhythmic activity in some retinal circuits.


Assuntos
Cegueira/fisiopatologia , Estimulação Elétrica , Neuroestimuladores Implantáveis , Células Ganglionares da Retina/fisiologia , Potenciais de Ação , Animais , Cegueira/terapia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/fisiopatologia , Periodicidade , Células Fotorreceptoras de Vertebrados/fisiologia , Degeneração Retiniana/fisiopatologia , Degeneração Retiniana/terapia , Técnicas de Cultura de Tecidos
10.
J Neural Eng ; 11(3): 036006, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24762943

RESUMO

OBJECTIVE: The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. APPROACH: Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. MAIN RESULTS: Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. SIGNIFICANCE: We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.


Assuntos
Potenciais de Ação/fisiologia , Algoritmos , Membrana Celular/fisiologia , Limiar Diferencial/fisiologia , Estimulação Elétrica/métodos , Potenciais da Membrana/fisiologia , Células Ganglionares da Retina/fisiologia , Animais , Células Cultivadas , Coelhos
11.
J Neurophysiol ; 107(10): 2742-55, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22357789

RESUMO

Electrical stimulation of retinal neurons offers the possibility of partial restoration of visual function. Challenges in neuroprosthetic applications are the long-term stability of the metal-based devices and the physiological activation of retinal circuitry. In this study, we demonstrate electrical stimulation of different classes of retinal neurons with a multicapacitor array. The array--insulated by an inert oxide--allows for safe stimulation with monophasic anodal or cathodal current pulses of low amplitude. Ex vivo rabbit retinas were interfaced in either epiretinal or subretinal configuration to the multicapacitor array. The evoked activity was recorded from ganglion cells that respond to light increments by an extracellular tungsten electrode. First, a monophasic epiretinal cathodal or a subretinal anodal current pulse evokes a complex burst of action potentials in ganglion cells. The first action potential occurs within 1 ms and is attributed to direct stimulation. Within the next milliseconds additional spikes are evoked through bipolar cell or photoreceptor depolarization, as confirmed by pharmacological blockers. Second, monophasic epiretinal anodal or subretinal cathodal currents elicit spikes in ganglion cells by hyperpolarization of photoreceptor terminals. These stimuli mimic the photoreceptor response to light increments. Third, the stimulation symmetry between current polarities (anodal/cathodal) and retina-array configuration (epi/sub) is confirmed in an experiment in which stimuli presented at different positions reveal the center-surround organization of the ganglion cell. A simple biophysical model that relies on voltage changes of cell terminals in the transretinal electric field above the stimulation capacitor explains our results. This study provides a comprehensive guide for efficient stimulation of different retinal neuronal classes with low-amplitude capacitive currents.


Assuntos
Potenciais de Ação/fisiologia , Estimulação Elétrica/instrumentação , Potenciais Evocados Visuais/fisiologia , Retina/fisiologia , Neurônios Retinianos/fisiologia , Animais , Estimulação Elétrica/métodos , Microeletrodos , Estimulação Luminosa , Coelhos , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...